Future Needs in Climate Modeling: Aerosol-Cloud Interactions

Ann Fridlind
NASA Goddard Institute for Space Studies

ACE Science Working Group Meeting 19 June 2008

What are "the problems"?

- microphysics
 - warm rain formation (GCCN, turbulence effects)
 - ice formation mechanisms (convective, stratus, wave clouds)

What are "the problems"?

- microphysics
 - warm rain formation (GCCN, turbulence effects)
 - ice formation mechanisms (convective, stratus, wave clouds)
- dynamics
 - microscale → macroscale
 - entrainment, self-organization, waves
 - interaction with microphysics

- microphysics
 - warm rain formation (GCCN, turbulence effects)
 - ice formation mechanisms (convective, stratus, wave clouds)
- dynamics
 - microscale → macroscale
 - entrainment, self-organization, waves
 - interaction with microphysics
- emergent quantities
 - precipitation
 - radiative fluxes
 - others

Aerosol-Cloud Interactions

What is required to solve "the problems"?

intensive field experiments

- intensive field experiments
 - detailed case studies
 - cloud-scale modeling
 - "process studies"
 - goal: understand all important physical processes
 - example: GEWEX Cloud System Study (GCSS) program

- intensive field experiments
 - detailed case studies
 - cloud-scale modeling
 - "process studies"
 - goal: understand all important physical processes
 - example: GEWEX Cloud System Study (GCSS) program
- observational statistical quantification attempts not enough!

- intensive field experiments
 - detailed case studies
 - cloud-scale modeling
 - "process studies"
 - goal: understand all important physical processes
 - example: GEWEX Cloud System Study (GCSS) program
- observational statistical quantification attempts not enough!
 - disentangling microphysics and dynamics too complex
 - easily misleading (cause, effect?)
 - ship tracks only in shallow marine Sc (mesoscale response?)
 - models generally required for quantification
 - and for climate prediction (parameterization development)

Role of satellite data sets

• part of "the solution"

Role of satellite data sets

- part of "the solution"
 - global coverage
 - seasonal cycles and longer
 - provide constraints on GCMs (necessarily limited)
 - test GCMs performance for current climate

Role of satellite data sets

- part of "the solution"
 - global coverage
 - seasonal cycles and longer
 - provide constraints on GCMs (necessarily limited)
 - test GCMs performance for current climate
- the future

- part of "the solution"
 - global coverage
 - seasonal cycles and longer
 - provide constraints on GCMs (necessarily limited)
 - test GCMs performance for current climate
- the future
 - GCMs becoming more like CRMs (two-moment microphysics)
 - look to CRMs for data needs (subgrid scale, PDF approach)
 - goal: collect an ERBE-like data set
 - can only use what we know to guess what we need

- part of "the solution"
 - global coverage
 - seasonal cycles and longer
 - provide constraints on GCMs (necessarily limited)
 - test GCMs performance for current climate
- the future
 - GCMs becoming more like CRMs (two-moment microphysics)
 - look to CRMs for data needs (subgrid scale, PDF approach)
 - goal: collect an ERBE-like data set
 - can only use what we know to guess what we need
- setting the stage

- part of "the solution"
 - global coverage
 - seasonal cycles and longer
 - provide constraints on GCMs (necessarily limited)
 - test GCMs performance for current climate
- the future
 - GCMs becoming more like CRMs (two-moment microphysics)
 - look to CRMs for data needs (subgrid scale, PDF approach)
 - goal: collect an ERBE-like data set
 - can only use what we know to guess what we need
- setting the stage
 - seasonally ice-free Arctic, Greenland melting, sea level rise
 - tools for comparing costs (sea walls versus reactors)
 - aerosol indirect effect bar charts lose significance, magnitude?
 - aerosol effects = what prevented early detection?
 - precipitation and regional climate prediction gain importance
 - long-term goals: understand cloud physics, make GCMs work

what do we know?

- what do we know?
 - aerosol-cloud coupling appears strongest in warm (low) clouds
 - aerosol variability is high vertically but low horizontally
 - cloud variability is high in both directions
 - $\bullet \ \ \text{aerosols} + \text{dynamics} \leftrightarrow \text{cloud properties} \\$
 - aerosol number size distribution dominates composition
 - cloud-base Sc precipitation $\propto (LWP/N_d)^{7/4}$?

- what do we know?
 - aerosol-cloud coupling appears strongest in warm (low) clouds
 - aerosol variability is high vertically but low horizontally
 - cloud variability is high in both directions
 - aerosols + dynamics ↔ cloud properties
 - aerosol number size distribution dominates composition
 - cloud-base Sc precipitation $\propto (LWP/N_d)^{7/4}$?
- what does this mean?

- what do we know?
 - aerosol-cloud coupling appears strongest in warm (low) clouds
 - aerosol variability is high vertically but low horizontally
 - cloud variability is high in both directions
 - ullet aerosols + dynamics \leftrightarrow cloud properties
 - aerosol number size distribution dominates composition
 - cloud-base Sc precipitation $\propto (LWP/N_d)^{7/4}$?
- what does this mean?
 - we need high vertical resolution to lowest altitudes
 - we need high horizontal resolution
 - "high resolution" = order 10-100 m
 - we need to aim for aerosol number size distribution
 - we need ground-based data (sub-cloud aerosols, dynamics)
 - we'd like to know LWP, N_d , and precipitation to 0.1 mm/d

ACE Mission

- important decisions
 - radar properties (scanning?, sensitivity?)
 - orbit height (low enough?)
 - lidar properties (multiple beams?)
 - polarimeter (resolution?)

ACE Mission

- important decisions
 - radar properties (scanning?, sensitivity?)
 - orbit height (low enough?)
 - lidar properties (multiple beams?)
 - polarimeter (resolution?)
- some general issues
 - radar resolution crucial (orbit height)
 - single beam sufficient for wide homogeneous clouds
 - but scanning radar would boost statistics enormously
 - multiple-beam lidar offers similar advantages
 - single beam can miss horizontal structure
 - how will dry aerosol NSD be cornered?

Aerosol-Cloud Interactions

Decision-making process

cost-benefit analysis (qualitative)

Decision-making process

- cost-benefit analysis (qualitative)
- face-to-face group decision-making (scientists)
 - unfunded activity (necessarily limited)
 - quantitative studies not possible
 - some vested interests

- cost-benefit analysis (qualitative)
- face-to-face group decision-making (scientists)
 - unfunded activity (necessarily limited)
 - quantitative studies not possible
 - some vested interests
- face-to-face group decision-making (technologists)
 - scientists sparse (e.g., Instrument Incubator Program)
 - powerful tendency to favor virtuosic technology
 - latest technology ≠ best science results

- cost-benefit analysis (qualitative)
- face-to-face group decision-making (scientists)
 - unfunded activity (necessarily limited)
 - quantitative studies not possible
 - some vested interests
- face-to-face group decision-making (technologists)
 - scientists sparse (e.g., Instrument Incubator Program)
 - powerful tendency to favor virtuosic technology
 - latest technology \neq best science results
- "simulator" studies (let's get together)
 - German HALO aircraft instruments
 - DOE ARM ground-based radar facility
 - ESA EarthCARE mission

Simulator Studies

- an approach (for clouds)
 - simulate response of instruments to simulated clouds
 - size-resolved microphysics helpful
 - stick to field experiment case studies

- an approach (for clouds)
 - simulate response of instruments to simulated clouds
 - size-resolved microphysics helpful
 - stick to field experiment case studies
- not a cure-all
 - still need clear scientific questions
 - still face trade-offs

- an approach (for clouds)
 - simulate response of instruments to simulated clouds
 - size-resolved microphysics helpful
 - stick to field experiment case studies
- not a cure-all
 - still need clear scientific questions
 - still face trade-offs
- part of the future (and ACE?)
 - doesn't need to be expensive or time-consuming
 - basic technology in hand (e.g., Quickbeam)
 - same technology useful for later science

2.8 GHz Radar (S-Band) Reflectivity + Doppler Velocity

Source: Data courtesy Christopher Williams (NOAA), DOE ARM data archive

94-GHz Radar (MMCR) and Lidar (HSRL)

Source: Data courtesy DOE ARM and Ed Eloranta / U. Wisc.

94-GHz Radar Reflectivity

Source: QuickBeam (http://reef.atmos.colostate.edu/haynes/radarsim/), Bastiaan van Diedenhoven / NASA GISS

94-GHz Radar Doppler Velocity

Source: QuickBeam (http://reef.atmos.colostate.edu/haynes/radarsim/), Bastiaan van Diedenhoven / NASA GISS

Lidar Backscatter Cross-Section

Example 2: Mixed-Phase Arctic Cloud Experiment

Lidar Circular Depolarization

Source: Bastiaan van Diedenhoven / NASA GISS

Lidar Circular Depolarization

Source: Bastiaan van Diedenhoven / NASA GISS

Summary

- problems
 - microphysical
 - dynamical
 - $\bullet \ \, \text{microscale} \to \text{cloud-system scale} \\$

Aerosol-Cloud Interactions

Summary

- problems
 - microphysical
 - dynamical
 - microscale → cloud-system scale
- solutions
 - focused field experiments (solve problems)
 - satellite data sets (make GCMs work)

Summary

- problems
 - microphysical
 - dynamical
 - ullet microscale o cloud-system scale
- solutions
 - focused field experiments (solve problems)
 - satellite data sets (make GCMs work)
- future
 - GCMs more like CRMs
 - integrated view of aerosols, clouds, precipitation
 - focus on regional-scale climate and precipitation
 - field-constrained CRM results for mission design

